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I. INTRODUCTION

The purpose of this paper is to construct some explicit polynomial spline
approximation operators for real-valued functions defined on intervals or
on reasonable sets in higher dimensions. Specifically, we consider operators
of the form Qf = L AJNi , where {Ni } is a sequence of B-splines and {Ai}
is a sequence of linear functionals chosen so that

(i) Qf can be applied to a wide class of functions, including, for
example, continuous or integrable functions;

(ii) Q is local in the sense that Qf(x) depends only on values of
f in a small neighborhood of x;

(iii) Qf approximates smooth functions f with an order of accuracy
comparable to best spline approximation.

Such approximation schemes have several important advantages over
spline interpolation. They can be constructed directly without matrix
inversion, local error bounds are obtained naturally, and for lower derivatives
the error bounds can be made independent of any mesh ratios.

Since the key to obtaining operators Q with property (iii) is to require
Q to reproduce appropriate classes of polynomials, we begin by examining
(in Section 3) when this is possible. This leads to a scheme for constructing
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.-\ as linear combinations of prescribed {Ai;}J=l to produce Q reproducing
polynomials of degree I - 1. We then find explicit representations for the
coefficients and use them to obtain error bounds.

We illustrate our construction with two explicit classes of B-spline
approximation methods; the first based on Ai; which involve point evaluation
off (and/or its derivatives), and the second based on Ai; involving integrals
of f against appropriate polynomials. The first class includes the variation
diminishing method of Schoenberg and Marsden (see [12]), the projectors
of de Boor [4], and the quasi-interpolant of de Boor and Fix [6]. (The latter
in turn was shown in [6] to include the "approximation by moments" method
of Birkhoff [2]; see also de Boor [3]). Other direct spline approximation
methods have been considered by Babuska [1], Fix, Nassif, and Strang
[8, 15], Jerome [10], and Schultz [13]. Our discussion owes much to the
paper of de Boor and Fix [6]. However, in comparison with their quasi
interpolant, our method based on point evaluations has the advantages
that it can be constructed without using derivatives while producing the
same error bounds as their quasi-interpolant, and with the same mesh
independence for the lower derivatives, (cf. the open question in [6, p. 36]).

Tn Section 7 we consider when our local approximation schemes become
projectors, and in Sections 8-10 we study a multidimensional scheme based
on point-evaluation functionals. This method can be applied to functions
defined on nonrectangular regions Q (without extending the function),
and the corresponding error bounds hold throughout Q.

2. SPLINES AND B-SPLINES

In this section we introduce a class of polynomial spline functions defined
on an interval [a, b] and give a basis of B-splines for it.

Let a = Yo < Y1 < ... < Yn = b and a corresponding sequence of
positive integers {di}~-l be given. We write 71' for the nondecreasing sequence
{Xi}1i obtained from {Yi}~ by repeating Yi exactly di times (thus N =
2:.;:11 di + 1). If k is an integer with k ;:?: di , i = 1,2,... , n - 1, we define

i = 0, I,... , n - 1 and

j = 0,1,... , k - d; - 1; i = 1,2,... , n -I},

where {YJk is the set of polynomials of degree less than k. This is the familiar
class of polynomial splines of order k (degree k - 1) with knots (of multi
plicity di) at the points Yi, i = 1,2,... , n - 1.
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To define a basis for ~,7T , let TT = {Xi}~ be extended to a nondecreasing
sequence TTe = {Xi}~!:-l with Xi < Xi+k, i = 1 - k, ... , N - 1. With

we define

(2.1)

i = 1 - k, ... , N - 1, where the symbol [Xi ,... , Xi+k] denotes the kth-order
divided-difference functional. The Ni,k are, apart from a constant factor,
the B-splines of Curry and Schoenberg [7]. In the following lemma we
summarize, for ready reference, several of their properties.

LEMMA 2.1. The Ni,k defined in (2.1) satisfy

(2.2) 0 < Ni,k(X) ~ 1 for X E (Xi, Xi+k) and Ni,k(X) = 0 otherwise;

(2.3) {Ni,kH:;:~ is linearly independent over [XHk-l, Xi+T+1]' for any r ~
k - 1 and any 1 - k ~ j ~ N - r - 1;

(2.4) {Ni,k}f~l~k spans ~,7T ;

(2.5) L:~~k g~I-'Wi,k(X) = Uix) = xI-'-l, fL = 1,2,... , k, where

t'''' ~ (-1)"-' (~ - I)! ,11'-"'(0) ~ ,ym"_'t;~"i) XHH!
• (k - I)!

fL-l

where Syml-'-l(Xi+l , ... , Xi+k-l) and !fi are defined by

k

!fi(X) = (x - Xi+l) ... (x - Xi+k-l) = L (_l)I-'-lxk-I-' Syml-'_l(Xi+l , ... , Xi+k-l);
I-'~l

(2.6) Suppose Xm ~ X < Xm+l and i ~ m < i + k. Fix 0 < r < k. If
x = Xm , suppose also that Xm is of multiplicity at most k - r - 1. Then
Nr~(x) exists, and

I N~r)(x)1 <. rkr
',k "" 11. ... 11.

z,m,k-l t,m.k-r

where for j = k - r, ... , k - 1 we define l1imi as the minimum of Xv+i - Xv
over v such that Xi ~ Xv ~ X < Xv+i ~ Xi+k , and where

(k - I)! [r]
rkr = (k - r - I)! [r(2]

with [r(2] = greatest integer less than or equal to r(2.
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Proof. For (2.2) and (2.4) see Curry and Schoenberg [7]. De Boor and Fix
[6] proved (2.3). Relation (2.5) has been proved by several authors; for
a proof with the g/s as given here see de Boor [5].

The estimate (2.6) is a refinement of one in de Boor and Fix [6]. To prove
it, we first note that

(r) (Xi+k - xi)(k - 1)!
Ni,ix) = (k _ r _ 1)! [Xi ,''', XiH] Gk-k; X).

Using Lemma 2.2 below with w = k + 1, fL = k - r we obtain

(r) (k - 1)1 r C) I [Xv+i ,,,., Xv+i+k-r] Gk- r(-; x)1
I Ni,ix )I ~ (k _ _ 1)' L ... , ,r . v~o -o'imlc-l -o'"nk-r+1

Since L Nv+i,k-r(X) ~ 1, (2.6) follows. I

LEMMA 2.2. Let 0 ~ fl, ~ w - 2. Then for any gl ~ g2 ~ ... ~ gw
with Yj = min1(;v(;w_j I gv+j - gv I > 0, j = fl, + 1,,,., w - 1, we have

Proof. Since

and I gw - gl I ?" Yw-l , we have (2.7) for fl, = w - 2. Now suppose it holds
for 0 ~ fl, ~ w - 2. Then

I[gl ,..., L]f I

L~,:t-l (W - fL - 1) \I[gv+2 ,,,., gV+iL+l]fl + [[gv+l ,,,., gV+iLlfl/
:<: v / gV+iL+l - gv+l \
~ .

Yw-l ... YiL+l

Now (gV+iL+l - gV+l) ?" YiL and combining the sums yields (2.7) for fl,

replaced by fl, - 1. Thus we have proved (2.7) for all °~ fl, ~ W - 2 by
induction. I
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3. OPERATORS WHICH REPRODUCE POLYNOMIALS

Let ff be a linear space of real-valued functions on [a, b], and let {.'\}~.::J be
a set of linear functionals '\: ff -+ IR. GivenfE ff, we construct an approxi
mation Qf to f by

N-l

Qf(x) = I A;fNi,k(X),
i~l-k

(3.1 )

Q defines a linear operator mapping ff into Y'k,'" Suppose ,~ contains
the class of polynomials :YJ l of degree at most 1- 1 for some :(: I :(: k.
In this section we study the choices of {A,;} which yield

Qg = g forallgE:YJ!. (3.2)

LEMMA 3.1. An operator Q defined as in (3.1) satisfies (3.2) if and only if

f-L = 1,2,... , I; i == 1 - k, ..., N - 1, (3.3)

where V,,(x) = X,,-l and g\") are as in (2.5).

Proof Fix 1:(: f-L :(: I. By (2.5), U.,(x) = L:~~k g\"Wi.k(X) while
QV,,(x) = L:~~k AiU"Ni,k(X), Since {NuJL-k1 is linearly independent,
V" == QU" if and only if \.V" =, g\"), i = 1 - k, ... , N - 1. I

It is convenient to construct 1\ satisfying (3.3) from given linear func
tionals {A.ij};~l . We formalize this in a corollary.

COROLLARY 3.2. Suppose that for each i = 1 - k, ... , N - 1, {Aij};~l is a
set of linear functionals defined on .'F" such that

det(\jU");,"~l =F O. (3.4)

Let {lXij};~l be the solution of

1

I lXijAijU" = g~"),
j~l

f-L = 1,2,... , I. (3.5)

Then Ai = L;~l lXijAij satisfy (3.3), and the corresponding Q satisfies (3.2).

For any prescribed {Aij};~l satisfying (3.4), the system (3.5) can always
be uniquely solved for the {lXd}~l' This will be especially easy if A;j have
the property that AijV" = a for f-L = 1, 2, ...,j - 1 and j = 1,2,... , I. Then
the system is lower triangular and

j = 2, 3, ... , I. (3.6)
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We point out that in this case the {aii} do not depend on I; i.e., if we have
the {aii}~~1' then to solve (3.5) with 1+ 1 we need only compute one new
coefficient.

The next theorem contains an explicit expression for the {aii} satisfying
(3.5) which will be useful for obtaining error bounds for f - Qf We recall
that the symmetric functions symM1 ,... , ge) are defined implicitly by

<+1 C C(x + g1) .,. (x + ge) = Lv~1 syme-v+l(Sl ,... , Se) xv-I.

THEOREM 3.3. For i = I - k, ..., N - I let {A;i};~l satisfy (3.4), and

suppose {Pii};~l are polynomials of degree at most I - 1 such that

j, f.L = I, 2, ... , I. (3.7)

Then if p;;(x) = L~~i1 aiivxv-1 with 0 ~ qij ~ 1- 1, the solution of (3.5) is
given by

aii = I aijvg~v).
v=l

In particular, ifPii(X) = Ci;(X - Ziil) ... (x - Ziiq), then
"

(3.8)

q;; ( ) ( )_ " v symv Zijl ,... , Zijqii symq;i-V Xi+l ,... , Xi+k-l (3.9)
aij-cijv~o(-l) (k-l) .

qij - V

Proof It may be verified directly that the aii in (3.8) satisfy (3.5). To
see how this choice arose, we multiply the vth equation of (3.5) by aijv and
sum over v = 1,2, ... , l. I

We conclude this section with several examples.

EXAMPLE 3.4. Fix 1 ~ d ~ I ~ k. For each i = 1 - k, ... , N - 1 let
a ~ Til'"'' Til ~ b be such that at most d of the {Til'"'' Til} are equal
to anyone value. Let Ai;! = [Til'"'' Tii]/' j = l, 2, ... , I, where if equal T'S
are involved; then the divided difference is interpreted in the usual extended
sense involving derivatives (cf., e.g., Isaacson and Keller [9, pp. 246 ff.]).
It is well known that {'\ij}~~l satisfy (3.4) and moreover, (3.7) holds with
Pij(X) = (x - Til) ... (x - Tii-l), j = 1,2,... , I. Thus if {aij}~~l are given by
(3.8), then the approximation scheme

N-1 I

Qf(x) = I I aij[Til , ... , Tij]f Ni.k(X)
i~l-k j~l

(3.10)
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satisfies (3.2); i.e., is exact for f!J!1' We emphasize that with d = 1 in this
example, the construction of Qf in (3.10) depends only on values of fat
the Tij, and not on any derivatives off In general, if d ~ 1, Q is defined
for anyfE Cd - 1 [a, b].

For convenience we list CXii for j = 1,2,3,4. We have

CXi3 = t~3) - (Til + Ti2) t~2) + Ti1Ti2

= t~3) - (T 11 + Ti2) CXi2 - T71 .

We note that if Til is chosen to be t}2) = (Xi+! + ... + Xi+1C-1)!(k - 1),
then CXi2 = O. Thus for example, with I = 2,

N-1

Qf(x) = L f(t~2)) Ni.k(X).
i~l-k

(3.11)

This is precisely the variation-diminishing spline approximation method 0

Marsden and Schoenberg [12] which reproduces f!J!2 •

If we select Til = t}2), then CXi3 and CXi4 also simplify to

CXi3 = t~3) - (t~2))2,

CXi4 = t~4) - t~2)f~3) - (Ti2 + Ti3)CXi3'

EXAMPLE 3.5. Let I = k = d in Example 3.4. Then we write Ti =

Til = ... = Til and note that Pii(X) = (x - Ti)i-l, and by (3.8) and (2.5),

j = 1,2,... , k. Then (3.8) becomes

N-1 Ie

Qf(x) = L L cxid1j-l)(Ti) Ni.le(x),
i~l-Ie i~l

(3.12)
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with {(Xii} given above. This is precisely the quasi-interpolant discussed
in de Boor and Fix [6]. It is defined on Ck - 1 [a, b] and is exact for 9 k , and
even for g;,,1T .

EXAMPLE 3.6. Fix 1 ~ I ~ k. For each i = 1 - k, ... , N - 1 let ul;(x) E

C(-I, 1) be given, where Wi(X) > 0 for xE(-I, 1). Suppose PiiE9; are
the associated orthogonal polynomials; i.e.,

v, f1' = 1, 2, ... , I. (3.13)

The polynomial Pii has j - 1 distinct zeros in (-1,1); say Pi;(Y) =
k i;( Y - ~ii1) ... (y - ~i;H) with kif of. 0 and ~ii1 ,... , ~ijj-l E (-1, 1). Typi
cally, we would choose Wi to yield classical orthogonal polynomials.

Now given any (Xi < f3i and fE L l [(Xi, f3i], we can define

,\ f Jl A ( ) A ( )!( f3i - (Xi (Xi + f3i ) d
i; = Wi Y Pi; Y 2 Y + 2 Y,

-1

If

j = 1,2,... , I. (3.14)

A (2X ~ (Xi - f3i)j
Pii(X) = Po f3. _ (X. ho ,, , j = 1,2,... , I, (3.15)

then (3.7) is satisfied. Thus with (Xi; given by (3.8) (where qi; = j - 1),
the B-spline approximation method

N-l I 1 f3 + f3
Qf(x) = L L (Xi; (J w;(y) A;(Y)! ( i;- (Xi Y + (Xi 2 i) dy) Ni,k(X)

i~l-k ;~1 -1

(3.16)

is defined for fE L l [a, b] and is exact for f!J 1 •

For later convenience, we note that

(3.17)
with

and

We also note that taking

j = 1,2,... , I

(the weighted moments of! over (-1, 1)) is equivalent to the choice (3.14);
that is, they lead to the same Q.
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4. SOME LEMMAS

In this section we provide some tools which will be useful for estimating
how well B-spline approximation methods approximate s:nooth functions.
In particular, we shall be interested in the quantities

E (t) = IDr(f - Qf)(t),
r.s (DrQf(t),

O:S;:r<s
s:S;: r < k,

(4.1)

where Dr is the rth derivative operator and s is an integer with 1 :s;: s :s;: k.
We have introduced the parameter s since often the B-spline approximation
Qf will have more derivatives than f In fact, if Qf is given by (3.1) and
if m is an integer such that x'" :s;: t < Xm+l' then

In

Qf(t) = I AdNik(t)
i=rn+l-1,

and
m

DrQf(t) = I AdDrNik(t).
i=m+l-k

(4.2)

(4.3)

We recall (cf. (2.6)) that DrNilc(t) exists for all t ¢ 7T, and also if t = X m E 7T,

provided X m has multiplicity at most k - r - 1.
Our first result is a basic comparison lemma which is designed to exploit

the property that Q reproduces polynomials. The idea has been much
used; cf., e.g., de Boor and Fix [6].

LEMMA 4.1. Suppose Q is defined on a class of functions containing f!JJ 1 ,

and suppose (3.2) holds (i.e., Q reproduces f!JJ 1). Then for any polynomial
g E f!JJ s and any f such that Drf(t) exists, 0 :s;: r < s :s;: I :s;: k,

E () = \DrR(t) - DrQR(t),
r.s t IDrQR(t),

where R(x) = f(x) - g(x).

Proof For 0 :s;: r < s,

O:s;:r<s
s:S;: r < k,

(4.4)

Dr(f - Qf) = Dr(f - g) + Dr(Qg - Qf) = DrR - DrQR,

since Qg = g. For s :s;: r < k,

DTQf = DTQf - DTg = DrQf - DrQg = DTQR,

since Drg = O. I
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Lemma 4.1 reduces the problem of estimating IET..(t)j to obtaining
estimates for 1 DTR(t)1 and I DTQR(t)j. The first of these is usually easy
(e.g., if g is the Taylor expansion at t, then R and its derivatives are 0 at t).
For the second term we have, by (4.3),

m

I DTQR(t)1 ~ L I AiR I ] DrNik(t)].
i=m+l-k

We have bounds on 1DTNik(t) I in (2.6); it remains to study] AiR I. If AiR =
L:~l (XijAi;R with {(Xu} satisfying (3.5), we have

!

I AiR I ~ L I (Xi; I Ai;R I·
;~l

We will have to estimate I AijR I for specific choices of Aij and R (see Sec
tions 5 and 6). In the remainder of this section we concentrate on the !Xi; •

LEMMA 4.2. Let g = (gl ,... , g,) and 'YJ = ('YJl ,... , 'YJd) be vectors of real
numbers with e ;:? d. Define

where the sum is taken over all choices of distinct g; ,..., g; from gl ,... , g, .
1 d

(This is a sum of e!j(e - d)! terms). Then

d

cp(g, 'YJ) = L (e - d + fJ-)! (d - fJ-)! symd-Jgl ,... , g,) sym,,('YJl '00" 'YJd)' (4.6)
,,~D

Proof It may be verified that for v = 0, 1,... , d,

a ~~ a (g; 0) = (e - d + v)! (d - v)! symd_v(gl ,... , g,),
'YJ;, 'YJ;v

for any choice of distinct 'YJ; ,... , 'YJ; from 'YJl ,... , 'YJd while1 v "

if any two of the 'YJj ,... , 'YJj 's are equal. Now (4.6) is just the Taylor expansion
1 v

of cp(g; 'YJ) with respect to the 'YJ-variable about 'YJ = O. I

LEMMA 4.3. Suppose {A;j};~l and {P;;};~l are as in Theorem 3.3. Then
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where the sum is taken over all choices of distinct VI"'" V qil from i + 1, ... ,
i + k - 1. (This is a sum of(k - l)!/(k - qij - I)! terms.)

Proof We combine (3.9) with (4.5) and (4.6) with e = k - 1, d = qij,
{gj = Xi+j};':t, and hI' = -Zi,.,,}~~l· I

LEMMA 4.4. Suppose Q reproduces polynomials ,qJJz and that {Aij};~l

and pilx) = cilx - zm) ... (x - Zijq) are as in Lemma 4.3. Given t, let m
be such that Xm ~ t < Xm+l . Then wi'th R as in Lemma 4.1,

z
I DrQR(t)1 ~ kTkr max...-- I! AijR I I Cij I Aij , (4.8)

m+l-k< '"" m j~l

where

A·· = max
1,J i+l.:s;vl' ... ,Vf1ij~ i+k-l

dIstinct

A ... A·
1-.m.k~l z.m.k~r

(4.9)

and where T kr and A imv are defined in (2.6).

5. ERROR BOUNDS FOR A METHOD BASED ON POINT EVALUATORS

Fix integers 1 ~ d ~ I ~ k. For i = 1 - k,oo., N - 1 let {T;j};~l be
prescribed real numbers in [a, b] II [Xi' Xi+k] such that for fixed i at most d
of the {Tij}i are equal to anyone value. Throughout this section we will
be concerned with the B-spline approximation method

where

N-l I

QEf(x) = I I (XijAfd Ni.k(X),
i~l-k j~l

(5.1)

(5.2)

and (Xij are given by (3.8) withpij(x) = (x - Til) ... (x - Tij-l),j = 1,2'00" I;
i = 1 - k,.oo, N - 1. (This is just Example 3.4 with {Tij}i restricted to lie
in the support of Ni,k') This makes QE a local approximation scheme;
the value of QEf(t) depends only on the values offin a (small) neighborhood
of t). We recall QE reproduces fJJJz. It is defined for allfE Cd-l[a, b].

The purpose of this section is to obtain estimates for I E;'.(t)l, which
we define as in (4.1) with Q = QE. We shall use Lemmas 4.1 and 4.4, so
we need to introduce an appropriate R.
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For fixed a ~ t ~ b, let m be such that X m ~ t < Xm+l' We write Iiv

for the smallest closed interval containing {Ti;}~~l' and 1m for the smallest

closed interval containing [xm , Xm+l] and U7:m+l-k liz, (The set U Ii!
contains the support of the P'i}:::+l-k involved in constructing Qf(t)). Now
for f E CS

-
1(Im ) we define

s-l Pil(t)
R(x) = f(x) - L -.,- (x - t)i. (5.3)

i~O I.

By the Taylor series for R we have

i-I _ DS-1Rm(x - t)s-i
D R(x)- (s-j)! '

for some ~(x) between x and t. We also note that

j = 1,2,... , s, (5.4)

DS-1R(x) = DS-1f(x) - DS-lf(t). (5.5)

Our first task is to estimate I ;";R I. As we will be using Lemma 2.2 we
need to introduce parameters describing the spacing of the Ti;' For each
integer 1 ~ v ~ 1- 1, let

(5.6)

where {TW, ... , TW} is the nondecreasing rearrangement of {Til"'" Ti;}' Since
at most d of the Ti; are equal to anyone value, auv > 0 for v = d, d + 1, ... ,
1- 1. We set

ais = min ai;s'
l~j~l

(5.7)

We will also need parameters describing the spacing of the partition 7T. Let

and

3 = max (x· 1 - x·)
m m+l-k:S;;i<m+k-l z+ l ,

3 = max (x 1 - x·)
l-k~i<N+k-2 l+ l ,

l1m k-r = min (xv+k - r - xJ,
• m+l-k+r<v~m

l1 k- r = min l1m k-r •
O";;;m<N-l '

X m <Xm+1

(5.8)

(5.9)

(5.10)

(5.11)

Finally, we define the modulus of continuity of a function g E C(I) by

w(g; l1; I) = max If(x + h) - f(x)l.
x,x+heI
O<h<.d
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LEMMA 5.1. Let 1 ~ d ~ s ~ I, where d is the maximum multiplicity of
the {Tiv}~=1 defining A~ . Let m + 1 - k ~ i ~ m. Then if fE CS-1(Im),

I
I 'i; - tiS-;

I AE·R I ~ kw(DS-1!'. J . I ) (j - I)! (s-j)!'
ZJ -.....:::::: J, m, 'In 2J- S

(s - 1)! Ui;.;-1 ... Ui;s'

where 'i; E I,:; .

j = 1, 2, ... , s,
(5.12)

j = s + 1,... , I,

Proof For any x E I rn we have

I Ds-1j(x) - DS-lf(t)1 ~ kw(Ds-1J; J m ; 1m ). (5.13)

Now to prove the first inequality we note that, for j = 1, 2, ... , s, A~R =

DHRgi;)j(j-l)!, where 'i;Eli;Clm . Now (5.4), (5.5), and (5.13) yield
the result. For the second inequality we use Lemma 2.2 with w = j and
JL = s - 1. Since L~:~ (i-;;S) = 2H we obtain

: \E.R I ~ 2;-8 I[Ti,V+l ,... , Ti,v+s]R I
I liZ) ~ max .

o~,(v~j-s ai,j,j_.l'·· ai,1',8

But I[Tiv+l ,... , Tiv+s]R I = I DS-IR('i;v)iJ(S - I)!, where 'iiv E 1m , V = 0, 1, ... ,
j - s. Thus (5.5) and (5.13) yield the result. I

We are now ready for our first error estimates. We begin with local error
estimates. Recall that 1m is the smallest interval containing [Xrn , Xrn+l]

and the support of {Ai;}J~1 for i = m + 1 - k, ... , m. We write LpS[I] =
{f: f(S-I) is absolutely continuous on I and f(S) E LAI]}.

THEOREM 5.2. Let 1 ~ d ~ s ~ I ~ k and] ~ q ~ 00. If fE CS-l[Irn ],

then for °~ r < k,

If, moreover, f E L pSlIm], ] ~ P ~ 00, then for 0 ~ r < k,

II EE [' ~ K Js-r+(lIq)-(lIp) II Ds!'11
rS !Lq[xm,Xm_+_l] ~ m rn , J LpUmJ·

Here

where
(Xi+k - Xi)

Pm = max ,
m+l-k,o:;;i~m Gis

and r ler = (k - l)!j(k - r - 1)! ([r;2]) is the constant in (2.6).

(5.14)

(5.15)
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Proof We use Lemmas 4.1, 4.4, and 5.1. In Lemma 4.4 we take qij =
j - 1 and Ziiv = Tiv, V = 1, 2, ... ,j - 1. Then for X m ~ t < Xm+l ,

where

I 2i - sA.. ]+ I ",
j~S+1 (s - 1)! aiJj-l ... a/js

(5.16)

A·· = max
1,J i+l~vl' ... ,Vj_l~i+k-l

VI" distinct
Ii. . . . .. Ii.. .

t,m.k-l l,m.7,,-r

Now since the Tiv'S lie in [Xi' Xi+k], I Xv - Till- I ~ I X/+k - Xi I ~ Pmais and
- I"

I Xv - Till- I ~ (k - l).LIm • Since Xm ~ t < Xm+l and Xm+l-k ~ Sii ~

Xm:k' we also have I SiJ - t I ~ him. Thus (5.16) implies (5.14) for q = 00.

Integrating the inequality over [xm , Xm+l) proves (5.14) for 1 ~ q < 00.

Now if fE L p s[lm], then for any X, X + 8 E 1m ,

I
x-te

I DS-lf(x + 8) - DS-lf(x) [ ~ IDSf(u) I du
x

(I x+e ) (1/1')
~ I DSf(u)j1' du 81-(1/1').

x

Taking the supremum over all I 8! ~ 3 m yields

These local error estimates lead immediately to the following global
result.

THEOREM 5.3. Let 1 ~ d ~ s ~ I ~ k and 1 ~ q ~ 00. /ffE CS
-

1 [a, b],
then for 0 ~ r < k,

(5.17)

/f f E L p S[a, b], 1 ~ p ~ q, then for 0 ~ r < k,

(5.18)

Here
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(Xi+k - Xi)
p == max

l-k~I~N-l ais

Proof The assertion (5.17) follows immediately from (5.14). Indeed,
.Jm :s;: .J for all m. Also, if m is such that X m < Xm+l , then I1m ,k-r > 0 and
the quantity I1k- r defined in (5.11) is also positive with I1m ,k-r ~ I1k _ r .

Finally, since pm :s;: p, Km :s;: K.
Now by Theorem 5.2, ifjE LpS[a, b],

Raising this to the qth power and summing over the v such that X m <
X m +1 yields ',

But for p :s;: q, Jensen's inequality (see, e.g., [16]) yields

since 1m C [Xm +l-k, Xm +k] so any piece of [a, b] is added into the sum
at most (2k _ vI) times. v I

The error bounds in (5.18) may be compared with the classical bounds
for spline interpolation (see, e.g., [16]). In particular, the orders are best
possible. The constants, however, are not best possible. We have exhibited
them primarily to show clearly on what they depend.

It is of interest to examine the question of when the constants K m and
K in the above theorems are independent of the mesh ratios .Jm/l1m ,k-r

or .J/l1k _ r and of the constants pm or p. This question depends on the
placement of the supports of the Ai; within the support [Xi, Xi+k] of the
B-spline Ni,k .

For 1 - k :s;: i :s;: N - 1 and 0 :s;: r < k, we define

n (5.19)
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(Note that Xl and XN-l are (as in Section 2) the first point in the partition 1T

bigger than a and the last point smaller than b, respectively). We note that
with simple knots,

i = I - k, ..., r - k
i = r - k + I, ... , N - r - I
i = N - r, ... , N - 1.

(5.20)

If Xi or Xi+k is a multiple knot, these intervals are even longer. Thus a
sufficient condition for Jir to be a nontrivial interval is that 2r < k.

The following lemmas will be used to estimate (5.16). We recall that
Iii denotes the smallest interval containing the {Til"'" Tij}.

LEMMA 5.4. Fix 0 ~ fL ~ r ~ s - I. Suppose

Iii C Jir n [a, b],

Thenfor i = m + 1 - k, ... , m

i = m + I - k, ..., m. (5.21)

(5.22)

for all choices of distinct El , ... , E" E {i + 1,..., i + k - 1} and Bl , ... , B" E

{I,... , l}.

Proof Let i ~ y ~ i + fL be such that [xm , Xm+l] C [xy , Xy+k-,,] and
XY+k-" - Xy = l!1i.m,k-,,' Now at most fL - 1 of the X'l ,... , x'/L lie outside
of [xy , Xy+k-,,], so at least one is inside. Moreover, all of the Tie'S are in
Iii C Jir , and since by definition Jir C [xy , Xy+k-,,], one of the factors
I x'v - Tiev I is less than or equal to l!1i,m,k-'" But then (5.22) follows by
induction. I

The next lemma is useful for the terms in the first sum in (5.16).

LEMMA 5.5. Fix 0 ~ r ~ s - 1, and suppose Xm ~ t < xm+l' Suppose
(5.21) holds. Then for i = m + 1 - k, ... , m and j = 1,2,... , s,

[ 'ij - t Is-i I XVl - Til I ... I XVi-! - Tij_! ! ;r
-------='--------'----'----- <: (kLJ )8-r-l

l!1i.m.k-l ... l!1i.m,k-r '" m ,
(5.23)

for all choices of 'ii E Iii and all choices of distinct VI"'" Vj_l from
{i+ l, ...,i+k-l}.

Proof Let y be such that Xi ~ Xy ~ t < XyH- r ~ Xi+k and l!1i.m,k-r =
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(Xv+k-r - Xv), Then by (5.21), Iii C J ir C [Xv, Xv+k-r], SO I Sii - t I ~
J).i.m.k-r ~ ... ~ J).i.m,k-r+s-i-I' Now we apply Lemma 5.4 to yield

I X - T'I I ... I X - T· . I
vI ~ Vr-s+i 1r-8+.J . < 1.

di,m,k-I ... J).i,m,k-r+s-i .

The remaining s - r - 1 factors are each bounded by klIm . I

For the terms in the second sum in (5.16) we have

LEMMA 5.6. Fix 0 ~ r ~ s - 1 ~ 1- 2 and X m ~ t < X m+I • Suppose
2r ~ s +- 1. Assume, further, that (5.21) holds and ais > 0, i =
m +- 1 - k, ... , m. Then for i = m +- 1 - k, ... , m and j = s +- 1, ... , I,

I X - T' I ... ! X - T·· I
I VI ,1 . 1';-1 "-1.,;:: ( *)i-S (klI )8-r-I

.. • J\ ... J\ "-'. pm m,
0iJi-! 0iisui,m,k-l LJ.i,rn,k-r

for all choices of distinct VI"'" Vi-I from {i +- 1, ... , i +- k - I}, where

Pm* = max
m+l-k<l<m Gis

(5.24)

(5.25)

and I J ir i = length ofJ ir •

Proof Fix s +- 1 ~ j ~ I. If r = 0, all of the xv's in (5.24) are in J ir •

If r > 0, the fact that Jir contains [XiH , Xi+/c-r] implies at most 2r - 2 of the
{Xi+! , ... , Xi+k-I} lie outside of J ir , so at least j - 1 - 2r +- 2 ?': j - s
of the {XV,"" Xv } lie in J ir . Since by (5.21) the T'S are also in J ir , (5.25)

1 1-1

implies at Ieastj - s of the I x - T I factors in (5.24) are bounded by pm*aiS .

We are left with s - 1 ?': r factors in the numerator, and we may apply
Lemma 5.4. I

THEOREM 5.7. Suppose in Theorem 5.2 that (5.21) holds. In addition,
suppose r ~ s - 1 and that 2r ~ s +- 1 if s < I. Then (5.14) and (5.15)
hold, with Km replaced by

ks-r+lT [ 1 1K * = ler 28- 1 +- L (2p *)i-S
m (s - I)! j~s+I m •

Proof We simply apply Lemmas 5.5 and 5.6 to (5.16). I
We emphasize that if s = I in the above, then Km * depends only on

k,r, and s. For s < I, it would be reasonable to choose the Til"'" Til equally
spaced throughout J ir n [a, b] with Til = left endpoint and Til = right end
point. Then if the {Xl-Ie , ... , X_I} and {XN+l , ... , XN+k-I} in the extended
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partition have been chosen such that Xj+l - Xj :::;: Xl - Xo ,j = 1 - k, ... , -1,
and Xj+l - Xj :::;: XN - XN-I, j = N, ... , N + k - 2, the constant Pm* in
(5.25) satisfies Pm* :::;: (k - r)(l- l)/s.

THEOREM 5.8. Suppose in Theorem 5.3 that

III C J,r (l [a, b], i = 1 - k, ... , N - 1. (5.26)

In addition, suppose r :::;: s - 1 and that 2r :::;: s + 1 if s < I. Then (5.17)
and (5.18) hold with K replaced by

where

*= max ~
P I-k< i<: N-I ais

6. ERROR BOUNDS FOR A METHOD BASED ON LOCAL INTEGRALS

Fix integers 1:::;: I :::;: k, and suppose {Pii};~l are the orthogonal
polynomials (Aj E £?J j ) with respect to weight functions Wi defined on [-1, 1],
i = 1 - k,oo., N - 1. Suppose [CXi, .8i] C [Xi' Xi+k], i = 1 - k,oo., N - 1.
Throughout this section we shall be interested in the B-spline approximation
method

where

N-I l

Qlf(x) = L L cxfj>'~;/ Ni,k(X),
i~l-k j~l

(6.1)

and CX~j are given by (3.9). (This is just Example 3.6 with [CXi , .8;], the support
of the >'~j , restricted to lie in [Xi' Xi+k]')

In this section we state estimates for I E~.s I defined by (4.1) with Q
replaced by QI. For 1 :::;: m :::;: N - 1, let 1m be the smallest interval con
taining [xm , xm+l] and [cx; ,.8;], i = m + 1 - k,oo., m.

THEOREM 6.1. Let 1 :::;: s :::;: I :::;: k and 1 :::;: q :::;: 00. if fE CS-I[Im ], then
for 0 :::;: r < k,

II EI II /' K As-r-l+(l!q) (DS-If' A . 1 )
r.s Lq[xm,xm+ll -2::::::: "'-1 m W. , I.J m , m' (6.3)
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/f fE Lps[Im ], I <: p <: 00, then for 0 <: r < k,

Here

K = ks+
1
T kr ( 3m )1' 1/2 ± kij .i-I

m (s _ I)! 11m m+l~~~~m II Wi IILp [-1,1] j~1 (h ij)l f2 (2pm) ,

where

= max (Xi+k - Xi)
Pm m+l-k~i~m (fJi - (Xi)

and k ij and hij are the constants associated with the orthogonal polynomials Pil .
Arguing as in Section 5 we easily obtain global estimates.

THEOREM 6.2. Let 1 <: s <: I <: k and 1 <: q ~C;; 00. /ffE C S
-

1 [a, b], then
for 0 <: r < k,

IIE
1

[' <K·;r'-1'-l (D'-y :or [ b))I r,S ILq[a,b] ~..:.I' w· ;..:.1; a, .

If fE LpS[a, b], 1 <: p <: q, then for 0 <: r < k,

!I E1 I' 0< (2k - 1) K3 s- r+(l/Q). (lip) II DSI'II ., 1', s ,Lq[a,b] ~ J Lp[a,b]

Here

k s+1T ( ;r )1' I kK kr..:.l 11/2 ij 2 .i-I
= (s - 1)! I1 k_ 1' l-k~f1N-l II Wi IL,[ai,lJi] tl (h ij)lf2 (p) ,

with
(X· k - x.)

P = max H '.
l-k~i~N-l (fJi - (X;)

(6,5)

(6.6)

Mesh independence results seem to be more difficult to obtain for Q1
than for QE. The difficulty is that in the estimates there are j - I of the
(fJi - (Xi) factors in the denominator as well as r of the 11 factors. We content
ourselves with only the simplest possible result.

THEOREM 6.3. Suppose in Theorem 6.2 that for i = m + 1 - k, ... , m,

Then (6.3) and (6.4) holdfor r = 1 < s with

r = 1< s. (6.7)
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In this section we examine the question of when a B-spline approximation
method Q of the form (3.1) is a projection onto .7,..". If Y is the class of
functions for which Q is defined, we will suppose Y'k." C Y. The following
lemma is well known, but we include its proof for completeness.

LEMMA 7.1. Let Q: Y ->- Y'k" be the linear mapping defined by (3.1)
for some set of linear functionals {Ai}~_-kl. Then Q is a projector (i.e., Qs = s
for all s E .7,.,,) if and only if {A.i}~_kl is a dual basis to {Ni,k}~_kl ; i.e.,

i,j = 1 - k, ... , N - 1. (7.1)

Proof Since {Njk}~_kl is a basis, Q is a projector if and only if QNjk =

L.:-;'~k (A.iNjk) Nik = N jk , allj = 1 - k, ... , N - 1. This is clearly equivalent
to (7.1). I

Now we may ask when a dual basis {A.i}~_kl can be constructed from
given sets {A.ij}~~l of linear functionals, i = 1 - k, ... , N - 1. We need
1= k since f?JJk C Y'k." and so Q must reproduce polynomials of degree
k - 1. It would be natural to take A.i = L.:~1 ('iijA.ij with {('iij}~~l given by
(3.5) with I = k. In general, this is not sufficient to assure that Q is a projector
(see Example 7.5 below). The following result (suggested to us by C. de Boor)
gives a sufficient condition.

THEOREM 7.2. For i = 1 - k, ... , N - 1 let {A.i;}~~l satisfy (3.4), and
suppose {A.ij}7=1 all have support in one subinterval [xv., xv+ 1] of [Xi' Xi+k].
Then with {('iij}~~l given by (3.5), the set {A.i}~_kl is a dual set'to {Nik}~-=kl .

Proof Fix 1 - k ~ i ~ N - 1. By (2.3), {N"k}J~v-k+l is linearly
independent over [xv., xv.H ], and hence span f?JJk in this i~terval. But then
by (3.4) the determin~nt in the system

k

A.iN"k = L ('iijA.ijN"k = 8i" ,
j~l

p.. = Vi - k + 1,... , Vi

is nonzero, and we can solve it uniquely for {('iij}7~1' Now

k

I ('ii;A.ijN"k = 0,
j~l

p.. = 1 - k, ..., Vi - k, Vi + 1, ..., N - 1,

automatically by the support properties of the {Aij}7=1' Now {A.i}~_kl is
a dual basis, and by Lemma 7.1 the corresponding Q is a projector. But
then (3.3) must hold so {('iij}7~1 must in fact be a solution of (3.5). I
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We now give several examples.

EXAMPLE 7.3. Suppose in Example 3.4 that I = k and that for i =

1 - k, ... , N - 1 the {Tij}~~l are chosen from intervals [xv, Xv +1] C [Xi, Xi+k]'

Suppose also that if some Tij is at a knot X/L' then th~ m~ltiplicity of the
Tij does not exceed k minus the multiplicity of the knot X/L' (Then Aij can
be evaluated on any S E '~IT' and Q is defined on a class .'7 containing
Y'kJT. In particular, if d is the maximum multiplicity of the Ti/S, then Q
is defined on Cd-l[a, b] at least). Theorem 7.2 now assures that Q defined
by (3.8) is a projector of Cd-l[a, b] onto ''/;'IT . This example includes several
projectors constructed in de Boor [4].

EXAMPLE 7.4. Suppose in Example 3.6 we take I = k and insist that
[CXi , ,8i] C [xv, x v+ l ] C [Xi' Xi+k] for some Vi, i = 1 - k, ... , N - 1. Then
Q given by (3.16) is a projector of Ll[a, b] onto .'7;',IT .

EXAMPLE 7.5. Let k = 2 and Xi = i, i = 1 - k, ..., N - 1. Then

IX - i,
N i2(X) = l i + 2 - x,

\ 0,

i ~ X ~ i + 1,
i + 1 ~ X 's:: i + 2,
otherwise.

Let Ail = eTiI (evaluation at Til) and A'2 = e
Ti2

, where TU = i + ~. ,
Ti2 = i + i . Then if we seek a dual basis of the form Ai = cxuAu + CXi2Ai2,

we will need, e.g. with i = 0,

But this has no solution. Thus no dual basis {/\}f.::i: can be constructed
from the given {A ij}. This example shows that in Example 7.3 the requirement
that the {Tij}~ lie in one subinterval of [Xi' Xi+k] for each i = I - k, ... , N - I
cannot be summarily dispensed with.

8. MULTIVARIATE ApPROXIMATION METHODS

In this section we consider B-spline approximation methods for func
tions defined on a region Q in [R2. (The methods and results extend im
mediately to higher dimensions.)

Given Q C [R2, let H = [a, b] X [Ii, b] be a rectangle with Q C H. Suppose
7T = {a = X o ~ Xl ~ ... ~ XN = b} and iT = {Ii = Xo ~ Xl ~ ... ~ XN = b}
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are partitions with multiplicities at most d and J, respectively. Let 7T'e =
{ }N-l+k d - {~}R-l+k b t' . S t' 2 W'th {N ( )}N-lXi l-k an 7T'e = Xi l-k e ex ensIOns as III ec IOn. 1 ik X i~l-k

and {Njk(X)}f==i~k univariate B-splines constructed as in Section 2 we may
define

for i = 1 - k, . .. , N - 1 and i = 1 - ii, ... , N - 1. This is a collection of
bivariate B-splines defined on [Xl-k , X!V+k~l] X [Xl _k , XR+k-Il.

Let Hji = [Xi, Xi+l] x [Xj , Xj+l] and .fi2 = rei, i): supp N iikk n Q eft eP,
1 - k ~ i ~ N - 1, 1 - ii ~ i ~ N - I}. Suppose .'7" is a linear space
of functions defined on Q, and suppose {ai;}Ci,i)E.P is a collection of linear
functionals defined on .'7". Then for any f E ff we may define a B-spline
approximation by

Qf(x, x) = L: aa! Niikk(X, x).
(i, i)E.P

(8.1)

The simplest way to construct such formulas is to take the tensor product
of two univariate schemes. But if we do that, then we will get a scheme
which usually will require information about f outside of Q (unless, for
example, Q is a rectangle itself). In order to obtain a method applicable
to functions defined on Q, we need to consider (possibly different) univariate
schemes for each 0 ~ i ~ N - 1 and 0 ~ i ~ N - 1.

For 1 - k ~ i ~ N - 1, 1 - k ~ i ~ N - 1, let Aij be a linear func
tional defined on functions of the variable x on [a, b] and let Aij be a linear
functional defined on functions of the variable x on [ti, b]. Suppose

support AiiX ii = [support Aa] X [support Xii] C Q for (i, i) E.fi2. (8.2)

Now with a ij = AiiA;; we have an operator Q* defined on functions on H by

Q*f(x, x) = L: aa!Niikk(X, x),
l-k';;;i,;;;N-l
l-k';;;i,;;;R-l

(8.3)

all (x, x) E H. If we are interested only in (x, x) E Q, then Q* reduces to Q
defined in (8.1).

Let &12
) be the class of all polynomials in two variables of total degree

less than I. The following result is easily proved.

THEOREM 8.1. Let ail = AijAij • Then

Q*g(x, x) = g(x, x), (x, x) EH, all g E & (2)I , (8.4)
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N-l

Qlgl(X):= I Ai; glNik(X) = gl(X),
i~l-k

and

xE[a,b],

(8.5)

N-l

Q2g2(X):= I Xii g/{ik(X) =~ g2(X),
;~l-k

X E [a, b], (8.6)

for all 0 ~ i ~ N - 1, 0 ~ i ~ N - 1.

Since for (x, x) E Q, Q*f(x, x) = Qf(x, x), (8.5) and (8.6) also imply

Qg(x, x) = g(x, x), (x, x) EQ, (8.7)

Thus if for each 0 ~ i ~ N - 1 and 0 ~ i ~ N - 1 the corresponding
univariate schemes are constructed to reproduce polynomials, so will Q.
For example, the methods discussed in Examples 3.4-3.6 lead immediately
to multidimensional analogs which reproduce polynomials.

As we saw in Section 3, it is most convenient to construct univariate
schemes which reproduce polynomials by choosing the linear functionals
as linear combinations of other simpler functionals. Thus, for example,
we might have

I

Aii = I (Xii)i;j
j~l

and
I

Xii = I ai;jXiij .
J~l

Then Q is given by (8.1) with

I

Bi; = I (XiijaiijAiijXiij.
j,j~l

(8.8)

(8.9)

We also note that if Am and Xiij annihilate polynomials of degree .i - 1
and] - 1, respectively, then it is easily seen that

(8.10)

has the property Bag = Bi;g for all g E fIJI' Thus if Q defined by (8.1)
with Ba reproduces polynomials flJi2l, then so does Q* defined by (8.1)
with Bi;.



LOCAL SPLINE APPROXIMATION METHODS 317

We close this section with two lemmas useful for obtaining error bounds.
Given 1 ~ s ~ k, let

E . ( -) = \Dr"(j - Qf)(t, l),
rrs t, t /Dr.rQf(t, l),

Arguing just as in Section 4, we obtain

o~ r + r < s,
s ~ r + r < k.

(8.11)

LEMMA 8.2. Suppose Qg = g for all g E &\2>, where 0 < s < I ~ k.
Then for any g* E&;2),

E _(t l) = \Dr"R(t, l) - Dr"QR(t, l),
m , IDr.rQR(t, 0,

o~ r + r < s,
s ~ r + r < k,

(8.12)

where R(x, x) = f(x, x) - g*(x, x).
Now suppose Au and Xii are given by (8.8) and (8.9) with Am and Xiij

satisfying (cf. (3.7))

AiijPiiv = Ojv,

Xii/Pm = OJ.,

j, v = 1, 2, , I

}, ii = 1,2, , I

for some polynomials Pii_(X) = cii.(x - Ziivl) ... (x - Zii_q) and Pm(x) =
cm(x - zlm) ... (x - zmiiJ. Let v

v

!2n1l71 = Hi, i): m + I - k ~ i ~ m, m+ 1 - k ~ i ~:;: m}.

LEMMA 8.3. For any R as in Lemma 8.2 and (t, l) E H m,m ,

where

(Aiij is defined similarly), and where l1i ,i,m,v are defined analogously to the
univariate case.

9. ERROR BOUNDS FOR CS-l(Q) FUNCTIONS

In this section we obtain bounds for Er,s defined by (8.11) with Q = QE
defined by (8.1) and with 0ii = Oi; given by (8.10) with

A;;;f = [Tiil , , TiiJ-IJf,

Xiiif = [Tii! , , Tiii-lJ!
(9.1)
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We suppose k = ii, that (8.2) holds, and that Au = support Au C [x, , Xi-i-k]

and Au = support Xi; C [X; , XHk ). If d and J are the maximum multiplicities
of the T'S and 7"s, respectively, then QE is defined for all fE C S

-
1(Q) with

d + J - I .,::;; s.
To obtain bounds on Errs, we shall use Lemmas 8.2 and 8.3, and compare

f with its Taylor expansion. To assure that the bound depends only on
values of f in Q we shall suppose Q is locally convex with respect to the
partition 7T X iT and the support sets Aii X Au of the linear functionals
defining Q. By this we mean the following. For fixed (t, l) E Q, let m, mbe
such that (t, i) E H mfli • We recall that the B-splines N i ; are nonzero at
(t, i) for (i, i) E f2m ,fli = {(i, i): m + 1 - k .,::;; i .,::;; m, m+ 1 - k .,::;; i .,::;; m}.
Then we say Q is locally convex (cf. de Boor and Fix [6]) provided that for
every (t, i) E Q, for every G,~) E Au X Ai;, and for every (i, i) E f2mfli ,

the line from (t, i) to (L ~) lies entirely in Q.
We note that convex regions Q are trivially locally convex with respect

to any partition and any choice of linear functionals with supports in Q.
Polygonal regions with sides parallel to the coordinate axes are also locally
convex provided the supports of the linear functionals are carefully chosen
and provided the mesh is sufficiently fine.

Given 0 .,::;;_m .,::;; N - I and 0 .,::;; m .,::;; N - 1, let Umfli = Ui,iE..P
m

,;; (convex
hull (Au X Ai; U Hmfli)). By the assumption on Q, clearly Umfli C Q. Now
for any fE cs-1(Umfli ), and fixed (t, i) E H mfli , we define

_ _ H s-H Di'Jj(t, i)(x - t)i(x - i)i
R(t.n(x, x) = !(x, x) - L L ., _, .

i~O j~O J.J.

We note that for any G, ~) E Umfli and I .,::;; j, j .,::;; s - I, j + j .,::;; s + I,

i-l,j-1 _ _ _ s-i-j+1 (x - t),,(x - i)s-i-j-"+1Di-l+,,,S-i-"Ra, ~)

D R(t,t)(x, x) - L I( _. _ - _ + I)' '
,,=0 j-t. s ] J j-t. (9.2)

where g, ~) is on the line from (t, i) to (x, x). Also,

DH+",s-i-"R(', b = DH+".s-i-"!(,, ~) - DH+",s-;-,,!(t, i), (9.3)

j-t = 0, 1, ... , s - j - j + I. We define for any Ll > 0 and any region e,

W(DS-1 m • Ll e) = max w(Dv,s-v-1m • Ll· e)
.", O~JI~O-l T' , ,

where

w(f; Ll; e) = sup
181,181 ,,;;.a

(x,X) ,(x+8,x+8)E0

I f(x + e, x + 8) - f(x, x)l·
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LEMMA 9.1. With R as above for j,j = 1,2,... , I,
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I A.··X.·-R I :<. ('iii + ~iij - t - i)s-i-j+l kw(Ds-lf; Lim,;, ; Urn';') (94)
tlJtl} "" (s-j-j+1)!(j-1)!(j-1)! ' .

for j + j ~ s + 1, where 'ifj E support Aiij , ~iij E support Xiij . Moreover,

for j + j > s + 1, where fJ, is any integer with 1 ~ fJ, ~j and 1 ~
s - fJ, + 1 ~j.

Proof For j + j ~ s + 1, we use (9.2) and (9.3) to obtain

I \ '\ R I - I Di-l·j-IR('iij, ~;;j)1 :<. k (Ds-I/,. A • U )
Iliijll;;j - (j-1)!(j-1)! "" W j,£J m ,;" m';'·

s-;-j+1

X L
,,~O

am - t)" (til - i)s-i-j-"+l
---,---;---"-''-:::
fJ,! (s -} -,} - fJ, + I)! (j - I)! (J - I)! .

This leads immediately to (9.4).
For} +,} > s + 1 and 1 ~ fJ, ~ j, 1 ~ s - fJ, + 1 ~ j, we use Lemma

2.2. Then
j-IJ, J-1-,<;+/..£

I A;;;XiijR ! = Ihi! ,... , Tiii ; Tii! ,... , Tiij]R I ~ L L
v=o v=o

(9.6)

- -
Uiii-l ••. Gii/.LGiij-1 •.• GiiS-/.L+l

Now as in the first part of the proof, each of the divided differences in the
sum is bounded by

kw(D,,-I'S-"f; Llm,;,Um,;,)/(fJ, - I)! (s - fJ,)!.

Now (9.5) follows easily. I
Using Lemmas 8.3 and 9.1 we obtain (cf. the proof of Theorem 5.2)

THEOREM 9.2. Let d + d - 1 ~ s ~ 1~ k and 1 ~ q ~ 00. If fE
CS-I(Um,;,), then for 0 ~ r, r < k,

II E E II :<. K As-r-r+(2/q)-1 (D S- 1/,. A • U )
rrs . Lq[Hmm,(')D] -.....::.: mm£.Jmm W J, L.J mm , mm, (9.7)



320 LYCHE AND SCHUMAKER

where Kmm is a constant depending on k, m, iii, r, 1', s, I, q and Jmm/lim,k-r ,
Jmm/iimk-r , pm and Pm, with

(Xi+k - Xi)
p = max

m (i,i)E'p N

mm

(x- k - x-)
Pm = max t+ t

(i,I)E.Pmm (jiis

We give two mesh independence results, First we consider s = I.

COROLLARY 9.3. Suppose that in addition to the hypotheses ofTheorem 9.2,
we have

(9.8)

(i, i) E f2mm , where Jir is defined in (5.19) and Jir is defined similarly. Suppose
also that s = I. Then (9.7) holds for r + l' ~ s - 1 with a constant Kmm
depending on k, m, iii, r, 1', I, q and on

Pt~m = max
(I,i)E.P N

mm

(lii,i,m,k-r + lii,i,m,k-r)
lii,i,m.k-r

(9.9)

(Ii., k + ii. -m k ,)P;;'m = max ',t,m, -r ','" -r

(i,i)E.P",;;. iii,i,m,k-r
(9.10)

(We emphasize that in this case Kmm does not depend on Jmm/iim,k-r or the
pm, Pm in Theorem 9.2.)

Proof By (9.8), the factors 'iii + ~iiJ - t - l in (9.4) are bounded by
lii,i,m,k-r + lii,i,m,k-r' Thus these s - j - j + 1 factors can be used to
cancel the shorter Ii's in the denominator of (8.13). Then Lemma 5.4 can
be applied. I

For I < s we have

COROLLARY 9.4. Suppose, in addition to the hypotheses of Theorem 9.2,
that (9.8) holds. Suppose also that r + l' ~ s - 1 and 2(r + 1') ~ s + 1.
Suppose

and

where

*! = max l&l < 00
Pmm (' ') .P

l,'t E mfii aiiliJ
(9.11)

(9.12)

w = min([(s + 1)/2], s - 21' + 2), w = min([(s + 1)/2], s - 2r + 2).

Then (9.7) holds with Kmm depending only on k, m, iii, r, 1', I, q, s, P.':::, P.':::
and on the constants P.'::m , P.'::m in (9.8) and (9.9).
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(We note that the constants in (9.11)-(9.12) are bounded by
(k - r)(l- l)/w and (k - f)(l- 1)/&, respectively, if the T'S and T's are
taken equally spaced in lir and Jif. A sufficient condition for lir and Jif
to be nontrivial is 2r < k and 2f < k.)

Proof We need to consider the terms in (8.13) with j + j ?:: s + 2 since
the terms with j + j ~ s + 1 were estimated in Corollary 9.3. By (9.7)
and the same argument as in the proof of Lemma 5.4, there are at least
j - 2r + 1 I x - z I's oflength at most [ lir [ and at least} - 2f + 1 I oX - z I's
of length at most I Jii I. We call these good factors. Now we claim that
we can choose i-L in (9.6) with i-L ?:: wand s - i-L + 1 ;): & so that good
factors can be used (via (9.11)-(9.12)) to cancel the a's and a's in (9.6).

We recall (9.6) is obtained using Lemma 2.2. To explain the process
of reducing

Ih ,..., Tj ; 7\ ,... , TJ]I (9.13)

to a divided difference involving s + 1 points we write the following
algorithm.

(1) If j + j = s + 1, then choose i-L = j and exit;

(2) if j ~ j, go to (5);

(3) if j - 2r + 1 ~ 0, choose i-L = j and exit;

(4) reduce the left side of (9.13) to one less point, cancelling a aj_l

factor; go to (1);

(5) if j - 2f + 1 ~ 0, choose i-L = s - I - j and exit;

(6) reduce the right side of (9.13) to one less point, canceling a aJ-l

factor; go to (1).

We now show how the good factors can be used. If we exit from (3),
then the factors aJ-l '00" as-HI can be canceled by the j - 2f + 1 good
loX - z I factors since 2(r + f) ~ s + 1 ~ s + 2. If we exit from (5),
then the factors aj_l '00" a s-I-J can be canceled by the j - 2r + 1 good
I x - z I factors since 2(r + f) ~ s + 1. Finally, if we exit from (1), then
either j or j equals [(s + 1)/2], and the smallest a or a factor canceled in
(4) or (6) is at least a[(s + 1)/2] or a[(s + 1)/2], respectively.

Let L1 = 3 + .J.

THEOREM 9.5. Let d + d - 1 ~ s ~ I ~ k and 1 ~ q ~ 00. If f E

CS
-

1(Q), where Q is locally convex in the sense defined above, then for °~ r,
f < k,



322 LYCHE AND SCHUMAKER

where K is a constant depending on k, I, r, r, s, q and 1JlfJ.k _ r , 1JlJik _ r , P
andp, where

= max (Xi+k - Xi)
P (' oJ '" 'I,t E..z aus

Clearly the analogs of the mesh independence results in Corollaries 9.3
and 9.4 hold for the global Theorem 9.5.

10. ERROR BOUNDS IN SOBOLEV SPACES

In this section we assume Q is a region in [R2 which is locally convex
in the sense defined in Section 9. We are concerned with approximating
functions in the usual Sobolev space Wps(Q), with norm given by

(

' s )(1/1))
Ilfllw~Wl = ~o fl~.p.Q ,

(

v. )(l/P)
Iflv,p.n =,~)Q I DI",V-I" fl P

•

We recall that WpS(Q) C C V
-

1(Q) for v-I < s - 21p, (see [14, p. 69]).
We will approximate fE Wps(Q) by the B-spline method QE defined

in Section 9. Thus in order to compute the Aiij and Xiij in (9.1), we need
to assume that d and J, the maximum multiplicities of the T and f's in (9.1),
are such that d + J - 2 < v - (2Ip).

We call a region U C [R2 starlike if there exists a ball B such that for
every (x, x) E U and every (y, Y) E B, the line between these points lies in U.

LEMMA 10.1, Let U be a starlike region. Suppose U is contained in a
sphere of diameter 1J. Suppose cp E WpS(U), 1 < p < 00, s ~ 1. Then there
exists a polynomial Scp E fY~2) (see [14, p. 55]) such that R = cp - Scp satisfies

(10.1)

for 0 :s;: (\:1 + (\:2 < S - 21p, where K is a constant independent of U and of cp.
If 1 < q < 00, then

II R II <: K1J s- H (2/ql-(2/P) I cp I Uwg<Ul ~ s.P. , (10,2)

for 0 :s;: j < s - (2Ip). Moreover, (10.2) also holds for j and q satisfying
s - (2Ip) :S;:j and 1 < q < 2pl[2 - (s -j)p].
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Proof These results are essentially the theorem of Sobolev [14, p. 69].
For example, to prove (10.1), we have (assuming for the moment that
R E es(Q)) (see [14, p. 70]) that

D~l'~2 R(t l) = II __1__ t W'l"2 (t l- x x)Dv,S-v R(x x) dx dx, u r 2- s+ct l+Ct Z 1,=0 v,s-v' , , , ,

where r = [(x - t)2 + (x - l)2]1!2, and
function. Then

W"1'''2 is
V,S-v an appropriate bounded

[D'1"2 R(t, l)1

[

• ] (l!P')
<: sup I W~l'~2 (t l' x x)I' II r-(2-S+~1+"2}P dx dx . 'I R I·-....::::: vs-v ' , , S.V,U,

<x,X)EU ' U

where (1lp) + (lip') = 1. Now if U is contained in a sphere of diameter .d,
then

With some effort it can be seen that 1 Wv,l-'-l(t, l, x, x)1 :'( Con < 00 for
all (t, l), (x, x) E 1R2 (with (Xl = (X2 = 0, Con = 1). This proves (10.1)
since I R Is.p,u = 1 rp Is.p,u. The proof of (10.2) is similar. I

In the next theorem we apply Lemma 10.1 to the set Umill defined in
Section 9. This is clearly a starlike region. Results similar to Lemma 10.1
(with indirect proofs) have been given for regions which are regular or
strongly Lipschitz, but without precise knowledge of the constants (see,
e.g., Jerome [11]; and references therein). We have followed Sobolev [14]
because we wanted precise knowledge of how the constants depend on the
region.

THEOREM 10.2. Let 1 < p < 00, d + d - 2 < s - (2Ip), and s :'( I.
SupposefE W'lJs(Umill ). Then

(10.3)

for 1 ~ q :'( 00 if0 :'( r + i < s-(2Ip), andfor 1 < q < 2pl[2-(s - r - i)p]
if s - 21p :'( r + i.
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The constant Kmm depends on the same parameters as in Theorem 9.2.

Proof We use Lemmas 8.2, 8.3, and 10.1 with R = f - g and g E P12J ,

the polynomial in Lemma 10.1. Now II DT,i'R liL [H _n.Ql is bounded using
_ (j m,m ....

(10.1) or (10.2). For DrrQR we use (8.13). Now for j + j ~ d + d, using
(10.1), we have

I A···A·-R I = I DH.j-l R(Siii' ~iij)1 ~ Con Lls-t-i+2-(2/P) if I
'" 11} (j _ I)! (j _ l)! "" mm I ,s.P.Umm •

For j + j > d + J, using Lemma 2.2 as in the proof of Lemma 9.1, we
can reduce the (j,j) divided difference to a sum of (fL, d + J - fL) divided
differences with 1 ~ fL ~ d, j and 1 ~ d + J - fL - 1 ~]:

j-I< j+I<-d-d-2

I AiiiAiijR I ~ I I
11=0 v=o

Now the divided differences can again be estimated by (10.1), and the result
follows. I

COROLLARY 10.3. Suppose in Theorem 10.2 that we also have (9.8) and
r + r ~ s - 1 and 2(r + r) ~ v + 1. Suppose (9.11) and (9.12) hold with
w = min([(v + 1)/2], v - 2r + 2) and OJ = min([(v + 1)/2], v - 2r + 2).
Then (10.3) holds with Kmm depending on k, m, m, r, r, I, q, s and the constants
p~;t, p~;t in (9.11)-(9.12) and P~m, P~m in (9.8) and (9.9).

Using Jensen's inequality, we immediately obtain

THEOREM lOA. Let I < p < 00, d + J - 2 ~ s - I < s - (2Ip), and
s ~ I. Suppose fE Wps(Q). Then

for p ~ q ~ 00 if0 ~ r + r < s - (2Ip) andfor p ~ q < 2pl[2 - (s - r - i')p]
if s - (21p) ~ r + r. The constant K depends on the same parameters as
in Theorem 9.3.

The analog of Corollary 10.3 also holds for mesh independence in this
global estimate.
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